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Thermo-acoustical waves in linear thermo-elastic materials 
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S U M M A R Y  
Coupled waves of thermal and mechanical jumps in linear thermo-elastic materials are analysed. General linear 
anisotropic constitutive equations of thermo-elastic materials are derived from the Clausius-Duhem inequality and 
Vernotte's heat conduction law is adopted. The waves are defined to have jumps in acceleration and in temperature 
rate and the four-dimensional thermo-acoustical propagation condition is obtained. The differential equations which 
govern the variation of the wave amplitudes are obtained. For waves in linear isotropic thermo-elastic materials, there 
are four principal waves. Two shear waves are purely mechanical and propagate with constant amplitude, while two 
thermo-longitudinal waves have different propagation velocities: one is larger and other smaller than the purely 
mechanical longitudinal wave velocity, and their amplitudes decay, in general, exponentially in time. 

1. Introduction 

In the classical theory Fourier 's  law: 

qi = - z T, i  (1.1) 

is assumed as a law of heat conduction, where q~ is the heat flux, T is the temperature and ~ is 
a positive constant called the conductivity. Here and henceforth a comma followed by a suffix 
denotes the partial derivative with respect to a coordinate. As a consequence of (1.1) the tem- 
perature field in a material is governed by a parabolic equation, which means that a thermal 
disturbance must propagate with infinite velocity. This fact shows that Fourier's law is valid 
only for a slowly varying phenomenon or a quasi-equilibrium state. 

In order to remedy this unpleasant feature Vernotte [1] proposed a modified Fourier's law: 

1 
~ = - - (q~ + x T , ) ,  (1.2) 

T 

where z denotes the relaxation time. Law (1.2) means that the dynamic heat conduction relaxes 
with time z and it is reduced to Fourier's law (1.1) inan  equilibrium state. 

Applying (1.2) to the coupled wave propagation of thermo-elasticity, Lord and Shulman [2], 
Popov [3] and Achenbach [4] discussed one -d imens iona l  wave propagation in isotropic linear 
elastic materials with thermal influence. Gurtin and Pipkin [5] investigated the temperature  

rate  wave  in a rigid material with memory, and Chen [-6, 7] and McCarthy [-8] analysed its 
growth and decay. 

In this paper three-dimensional  thermo-aeoust ical  waves  are discussed theoretically. In 
Sect. 2 the constitutive equations of an anisotropic linear thermo-elastic material are defined 
from the Claus iu s -Duhem inequali ty  and the anisotropic heat conduction law is defined. In 
Sects. 3 and 4 the properties of thermo-acoustical waves in anisotropic thermo-elastic materials 
are discussed generally and in the last section waves for isotropic cases are discussed. 

2. Basic equations 

A thermo-elastic material is defined by the constitutive equations: 

= o ) ,  = o ) ,  = o ) ,  (2.1a, b,c) 
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where 6, au and r/denote, respectively, the specific Helmholtz free energy, the stress tensor and 
the specific entropy, while r is the strain tensor and 

0 -- ( T -  To) / T O (2.2) 

denotes the dimensionless temperature. Here and henceforth the suffix zero denotes a quantity 
evaluated in an equilibrium static state. 

Coleman and Noll [9] introduced the Clausius-Duhem inequality: 

i 
p(@+t lT ) -aod ,3  + ~ qiTa<= O, (2.3) 

which must be satisfied for all admissible processes, where p and d~j-(�89 denote, 
respectively, the density and the deformation rate tensor, v~ is the velocity of a material particle, 
and the summation convention with repeated suffixes is applied. From (2.1a) and (2.3) we can 
conclude that 

t T i j =  P - -  , I']-- , (2.4a, b) 
(~gij T aO 

qi T,i <= O . (2.5) 

Now we assume that the concerned deformation and temperature deviation from an equi- 
librium state are so Small that the free energy may be approximated by the quadratic form: 

0 = *  1 2 (2.6) ~CijklSijF.kl-'~ C i j g i j O " ~ C O  , 

where CUkt, Ctj and C are material constants and have the following symmetry relations: 

Cijkl  = Cjikl  = Cijlk = Ckli j  , Cij = Cii. (2.7a, b) 

Substituting (2.6) into (2.4) and restricting the relations to be linear we have 

1 (Cije~j+ CO). (2.8a, b) 

The law of balance of energy is expressed by 

p (6+qT)"  = ffijdij-qi,i (2.9) 

with the assumption of no heat supply. Applying (2.4) to (2.9) we have 

~l = - q,,J(Po To). (2.10) 

From (2.8) and (2.10) we have 

d~j = po (Cukt dg, + C o 0),  (2.11) 

qi,i = Po (Cijdij + C 0).  (2.12) 

Any material particle must satisfy the law of balance of linear momentum: 

f f i j , j  ~- POl) i ,  (2.13) 

where the body force is neglected. 
Now we generalize Vernotte's isotropic heat conduction law (1.2) to an anisotropic law, that 

is, we assume 

(li = - vii (qj + Kjk O,k) , (2.14) 

where v u and K o--- zij To denote, respectively, the inverse relaxation time tensor and the con- 
ductivity tensor. 

Relations (2.11)-(2.14) constitute thirteen equations with thirteen variables vi, O, au and q~. 
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3. Velocities and amplitudes of thermo-acoustieal waves 

A singular surface associated with the velocity and the temperature is called a thermo-acoustical 
wave* if the following two conditions hold : 

(i) vi and 0 are continuous everywhere. 
(ii) fh, vi,j, i5~, fJi,j, Vi,ik, O, O i, O, O i, and O,ij have jump discontinuities across the singular 

surface but are continuous everywhere else. 
Also we assume that a~j and qi are continuous across the singular surface while their first- and 

second-order derivatives may have finite jump discontinuities. 
The geometrical and kinematical compatibility conditions of any quantity f ,  with the 

assumption [ f ]  = 0 across a singular surface, are given by 

[f,i] =fn,, [ f ]  = - U f ,  (3 .1)  

where ni and U denote, respectively, the unit normal and propagation normal velocity of the 
surface and 

f -  If , , ]  n,, (3.2) 

where a square bracket denotes a difference of two values of a quantity adjacent to the both 
sides of the surface [10, Eqs. (180.5)]. 

Applying the compatibility conditions (3.1) to (2.11)-(2.14) we have 

- U~,j  = Po (C,jk, nZ~k-- UCijO),  (3.3a) 

[1,ni = Po ( C q n j ~ , -  UCO) , (3.3b) 

6ijnj = - Po U fh , (3.3c) 

U ?li = vijKjk nk O. (3.3d) 

Eliminating fffj and ~ from (3.3) we have the propagation conditions of the thermo-acoustical 
wave : 

(Q~k-- U2 3~k) f~k-- UQ,O = O, 

-- U Q~fJi + (Q + u2 c )  O = o ,  

where 

Qik = Cijktnjnl , Qi = Ci jn j ,  

(3.4a) 

(3.4b) 

Q = nivijKjknk (3.5) 

P0 

and Qik is called the acoustical tensor of the purely mechanical acceleration wave. The vector 
~ and the scalar 0 denote, respectively, the mechanical and the thermal components of the 
thermo-acoustical wave. 

Now we introduce a four-dimensional inner-product space U4, which consists of a physical 
three-dimensional space and a one-dimensional real space. The amplitudes ~i and 0 are combin- 
ed and represented by a single vector a, in ~4, where the greek suffix runs from one to four 
and a i = vi and a~ = 0. Then (3.4) are expressed by 

R~0 ap -- 0 ,  (3.6) 

where 
Qi~-  U 2 '~ik - UQi 

[IR~al[ = - U Q ,  Q + U 2 C  (3.7) 

is called the thermo-acoustical tensor. 

* A p arely mechanical wave, which is defined by a non-vanishing jump of acceleration is called generally an acceleration 
wave, while a purely thermal wave, which is defined by a non-vanishing jump of temperature rate is called a temperature 
rate wave [5]. 
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The propagation velocities are obtained as solutions of 

det (R~t~) = 0 (3.8) 

and we have, in general, four principal waves whose propagation velocities are solutions of 
(3.8) and whose amplitudes have directions parallel to the principal axes of R~.  

When the material has no thermo-mechanical coupling, C# = 0 from (2.8). Then from (3.7) 
the waves are separated into purely mechanical and purely thermal waves and their velocities 
are given, respectively, by 

det (Q~k-- U2 6~k) = O, U 2 = - -Q/C.  (3.9) 

Furthermore, if the material is a non-conductor, we have C = 0, then a4 = 0, which indicates 
that there is no temperature rate wave. 

4. Variation of amplitudes of plane thermo-acoustical waves 

Thomas' iterated compatibility conditions of second-order are given by 

[f.i3] =fn~nj ,  I f ,  i] = ( - - u f  + f ) n k ,  I f ]  = U2f  - 2 U f  , (4.1a, b,c) 

where 

f =  [f ,  ij] ninj (4.2) 

and where any quantity differentiated with respect to the coordinates on the plane wave front 
may be assumed to vanish. (Cf. [11] and [10, Eq. (176.8)and Eqs. (181.8)]). 

Differentiating (2.11)-(2.14) with respect to time and applying (4.1) to them and eliminating 
~ij, ~1,, aij and qi, we have 

2 U bi + Q~O = - (Qik-- U2 (~ik) ~k nt- UQi O, (4.3a) 

Q ~ i -  2U C 0 + (P/U) 0 = UQ, ~ -  (Q + U 2 C) O, (4.3b) 

where 

P - (1/po)nivijvjkKk~nm. (4.4) 

The ~U4-space representation of (4.3) is given by 

S~ fi~ + (P/U) 6~4 a4 = - R~t~ bp (4.5) 

where 

2U t~ik Qi (4.6) 
IIS~ll- (L - 2 u c  

and b~ denotes a vector in ~U4, which has components ~ and 0. 
Multiplying the principal vectors n~ ~) (~ --- 1, 2, 3, 4) of R~p with (4.5) we have a set of differential 

equations : 

T~) gt~ + (P/Us)n~{)a4 = 0,  (4.7) 
where 

T~ ')=- S~n~ '1 (4.8) 

and U~ is the principal velocity corresponding to the principal vector n~ ~). Equations (4.7) 
govern the amplitudes of the waves. If the material is a non-conductor, we have P = 0, or if the 
wave is purely mechanical, we have n~)---0. In these cases we have T~ ~) G =  0, which means 
that, for the case of det (r~ ~)) r 0, 

G = constant.  (4.9) 

Then we can say that plane thermo-acoustical waves in a non-conductor and purely mechanical 
plane waves propagate with constant amplitudes along their propagation paths. However, 
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when Pn}~ ) # 0, the amplitudes of the wave may vary, in general, along the paths. 
With respect to the variation of the wave amplitude there are, in general, three effects: 

(a) geometrical effect, (b) non-linear effect and (c) thermal effect. 
When the wave front is not a plane, e.g., it is a spherical surface, it must spread or shrink 

according to its centrifugal or centripetal propagation direction, then its amplitude must, in 
general, decay or grow. This fact denotes the geometrical effect. 

When we do not restrict our attention to small deviations of deformation and temperature 
from an equilibrium state, the constitutive equations may have non-linear terms with respect 
to them, then the derived differential equations for the wave amplitudes are not (4.7) but they 
contain second- and higher-order terms of the amplitudes. Therefore the wave amplitudes may 
decay or grow by reason of existence of the non-linear terms. This is the non-linear effect. 

Here we consider plane waves in linear thermo-elastic materials. Then we have no geometrical 
and non-linear effects. However, as we analyzed above, plane thermo-acoustical waves in 
linear thermo-elastic materials may vary their amplitudes along the paths, and the cause of 
this variation may be regarded as heat conduction or thermal coupling. This is the thermal 
effect. 

5. Linear isotropic thermo-elastic materials 

In this case Cijk~, C o, v~j and Kij are constant isotropic tensors with symmetry relations (2.7). 
We assume now v~j = vj~ and K~j = K.#~. Then by the familiar theorem of tensor analysis we can 
express them as 

C,j~ = (,VPo) 6,j 3k, + (#lPo) (O,~'~j, + '~,,'bk) , 

Cij = - (32 + 2/0 c~ (TolPo) 3ij = - A 6 , ,  

C = - C v  T2 ,  vi i= (1/z)f i j ,  Kij = xTo3i j ,  

(5.1a) 

(5.1b) 

(5.1c, d,e) 

where 2 and # are the Lain6 elastic constants, c~ is the coefficient of thermal expansion, Cv 
is the specific heat at constant volume, and 3ij denotes the Kronecker delta. 

Substituting (5.1) into (3.5) and (4.4) we have 

Q,~ = ( (~ + ~)lpo)~, n~ + O'lpo) ~,~ , 

Q, = - (32 + 2#)c~(T0/Po ) n i = - A n, , 

xTo zTo 
Q -  f -  

po z ' poZ2 " 

Then adopting 
obtain 

(5.2a) 

(52b) 

(5.3a, b) 

the coordinate axis x3 = z as the propagation direction of the plane wave we 

C 2 -- U 2 0 0 0 I 

I IR~<~II = 0 0 c~-U2 0 0 
0 CL 2 -- U 2 A U ' 

0 0 A U  xTo Cv T~ U 2 
Po z 

o o o 

2U 0 0 
IlSapll= 0 2 u  - A  ' 

0 - A  2c vT~ 

where 

_ (2+2P_) ~ 
CT ( ~ "  CL 

W o l  ' - t- o) 

(5.4) 

(5.5) 

(5.6) 
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denote,  respectively, the transverse and  longitudinal  p r o p a g a t i o n  velocities of  the purely 
mechanica l  wave. 

F r o m  (3.8) and  (5.4) we have  four  principal  waves. T w o  shear waves are purely mechanica l  
and  p ropaga t e  with same velocity Cv and they have, respectively, ampl i tudes  a 1 and  aa. The  
other  two waves are thermo-longitudinal waves whose velocities a r e  solut ions of 

(U/eL) 4 -  (1 + f12 + 7)(U/eL)z +//2 = 0 ,  (5.7) 

where  
z (32 + 2#) z 0~ 2 

//2 _ - p o ( 2 + 2 # ) C v  (5.8) 

are dimensionless  mater ia l  constants*.  
F r o m  (5.7) we have 

(U/cr )  2 - 1 = �89 [ (//2 + ~ _ 1) ___ { (//2 + 7 - 1) 2 + 4Y}~] �9 (5.9) 

Then  we can easily p rove  tha t  U+ >CL and U_ < CL, where U+ and U_ (U+ > U_) are two 
solut ions of  (5.7), and  we can say tha t  U+ = CL if, and  only if fl < 1 and  y = 0, and  that  U_ = CL 
if, and  only if fl > 1 and  7 = 0. F o r  a non-conduc tor ,  which is character ized b y / / =  0, we have  

U_ -= O, U+ = ( I+y)6CL,  (5.10) 

and  for no  the rmo-mechan ica l  coupling, which is character ized by 7 = O, we have 

U = CL, U = flCL. (5.11) 

Figure  1 shows the p ropaga t ion  velocities of  the thermo- longi tud ina l  waves. 
The  ampl i tude  rat io  of  the thermal  and  mechanica l  componen t s  of  the thermo- longi tudina l  

wave is given by 

(32 + 2/~)a T O c L a4 _ (U/CL) 2 -- 1 (5.12) 

2 + 2# a3 (U/CL) 

U 
el_ 

0 
0 I 2 3 

Figure 1. Variation of propagation velocities of the thermo-acoustical waves, where solid and broken lines refer, 
respectively, to faster and slower waves. 

* Equation (5.7) is identical with that of Achenbach [4], while the two dimensionless constants (5.8) are different from 
those defined by him. 

Journal of Engineering Math., Vol. 7 (1973) 115-122 



Thermo-acous t i ca l  waves  in linear thermo-elas t ic  mater ia ls  121 

Thus the waves with U+ ( > CL) and U_ (< Ce) have, respectively, the same and the opposite 
sign as the mechanical and thermal amplitudes and the wave with U = Ce is purely mechanical. 
The variations of the amplitude ratios are shown in Figure 2. 

5 

0 

',~'~', / o.o~ 

"  oz5 

"~ 5r 'x "x  x 

I 2 3 

Figure 2. Variation of the dimensionless ratios of amplitudes of the thermo-acoustical waves, where the ordinate 
denotes [ (32 + 2#)c~T0 %/(2 + 2#)]]aJa31 and solid and broken lines refer, respectively, to faster and slower waves. 

Four  principal directions in ~ 4  are given by 

, = = c L - - U +  ) (5.13a, b,c) n(~ 1)= (1, 0, 0, 0) ..(2) (0, 1, 0, 0) n(~ -+) (0, 0, - A U +  2 2 

From (4.7), (4.8), (5.5), (5.6)1 and (5.13 a and b) we have 

~il = a2 = 0 ,  (5.14) 

which show that the plane shear waves propagate with constant amplitudes. Also from (5.13c) 
we can easily obtain 

A ( 4  + U 2) a3 - V {A: + 2 ( 4  - U 2) Cv rg} a4 - 
e(4- u ~) 

U 
a4, (5.15) 

which yields from (5.12) that 

~i 3 = - (v/z) a3,  (5.16) 
where 

v = flz { ( U / c c ) 2 - 1 } 2  (5.17) 
2 (U/CL) z [7+ {(U/CL) z -  1} 2] 

denotes the dimensionless damping constant*. Therefore from (5.16) and (5.12) we have 

= - = aa(0) exp 
z Uzz ' 

a 4 = a 4 ( 0 ) e x  p ( - - v  0 = a4(0)exp (_ v z) 
-c ~ ' 

* The dimensionless damping constant (5.17) is different from the one given by Achenbach [4]. 

(5.18a) 

(5.18b) 
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where  a3 (0) and  a 4 (0) denote ,  respectively,  the ini t ia l  amp l i t udes  of  a3 and  a 4 at  t = 0 or  z = 0 
and  where  U denotes  e i ther  U+ or  U_.  

F r o m  (5.17) and  (5.18) we can say tha t  t h e r m o - l o n g i t u d i n a l  waves decay  exponent ia l ly  wi th  
respect  to t ime or  dis tance,  and  their  ampl i tudes  r ema in  cons tan t  if, and  only if the mater ia l  
is a n o n - c o n d u c t o r  or  U• = %.  The  va r ia t ion  of  the  d a m p i n g  cons tan t  is shown in F igure  3. 

0 . 6  

9 

o o I 

/',?,z U o.oo I 

I 

0 I 2 3 
B 

Figure 3. Variation of the dimensionless damping constant, where solid and broken lines refer, respectively, to faster 
and slower waves. 
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